
The Why and How of Test Data

Session 26

Tamar E. Granor

Tomorrow's Solutions, LLC

8201 Cedar Road

Elkins Park, PA 19027

Voice: 215-635-1958

Fax: 215-635-2234

Email: tamar@tomorrowssolutionsllc.com

A realistic test data set provides a variety of advantages to developers, testers and end users, yet

most applications don’t include one. In this session, we’ll look at the reasons for supplying test

data and examine ways to generate it

Testing is a key element of application development. Yet, far too often, developers test their

work against a toy data set or against live data. While a small and unrealistic data set lets you

find obvious bugs, it doesn't stress test the application and may miss subtle bugs. The problems

of testing against live data include damaging the data and violating privacy policies.

The best solution is to have a test data set that is realistic in both size and content. This provides

a safe and robust test environment. Some developers even provide test data to their customers;

customers can use the test data for training and practice and to try to reproduce problems without

damaging their real data.

This paper explores the reasons for creating test data, examines what constitutes good test data,

and looks at ways to create test data.

What is test data?
Since the term "test data" may have different meanings for different people, let's start with some

definitions. According to www.Tech-Encyclopedia.com, test data is:

A set of data created for testing new or revised applications. Test data should be

developed by the user as well as the programmer and must contain a sample of

every category of valid data as well as many invalid conditions as possible.

The Glossary at www.austin.cc.tx.us/audit/ offers this definition instead:

Data that is run through a computer program to test the software. Test data can

be used to test compliance with controls in the software.

www.Answers.com gives this definition:

A set of data developed specifically to test the adequacy of a computer run or

system; the data may be actual data that has been taken from previous operations,

or artificial data created for this purpose.

In fact, there are at least two kinds of test data. One kind is a set of realistic data meant to provide

a test bed for an application. It includes a substantial number of records ordered in a way that

reflects the normal operation of the application.

The second kind of test data (hinted at by the Tech Encyclopedia definition) is data designed to

test specific aspects of an application. This data might include tests for boundary conditions,

application limits and so forth. This kind of test data is often used in conjunction with automated

testing or a test-driven approach to development.

This session is focused more on the first kind of test data. While the testing process needs to

ensure that invalid data can't get into the database and that the application handles unusual

situations properly, a test database is assumed to be data that the application has already validated

and accepted.

Why is test data important?
Many developers test their applications by entering a few records manually and then checking

that those records can be properly edited, processed and reported on. I have a tendency to start

with "John Smith" of "1234 N. Main St." I've seen Mickey Mouse, George Washington and all

kinds of other names in sample data. I've also encountered applications where bug fixes and

http://www.tech-encyclopedia.com/
http://www.austin.cc.tx.us/audit/
http://www.answers.com/

updates are tested against a copy of the actual application data (or, even, occasionally, against the

live data itself).

What's wrong with these approaches? To turn the question around, what does a test data set offer

that other techniques don't?

Test without damaging live data

This is the most obvious benefit of test data. Obviously, testing on live data is incredibly risky.

Taking the chance of damaging a company's mission-critical data is foolhardy and

unprofessional.

This benefit also makes the argument for providing users with a test data set. If the people using

an application can easily switch between live data and a robust test set, they can try application

features in a low-risk environment, replicate errors without further damage to their live data and

train new employees safely.

Test without privacy loss

Many applications deal with personal data, such as social security numbers, health information,

salaries, and so forth. It's unlikely that privacy policies permit releasing that data to the

company's software developers. Even if it's not specifically prohibited, the fewer people with

access to sensitive data, the better. There's been plenty of coverage of personal data being leaked

to the world over the last few years. A test data set avoids this issue.

Test many situations and unusual cases

A good test data set provides a range of good data that tests the limits and boundaries of the

application. For example, if a character field can hold up to 25 characters, having test data that's

only 1 character as well as test data that fills all 25 characters lets you see whether forms and

reports handle short as well as long values. While "John Smith" may look great in a report,

"Maximilian Alexander-MacDougall" may turn up some formatting issues.

Having null values where they're permitted tests the null-handling features of your application.

Processing large numeric values tests whether fields holding summary results are wide enough.

The more acceptable cases you include in your test data, the more chance of turning up subtle

errors while testing.

Test in a known state

It's a good idea to not just include test data, but to keep two copies, one to work on and one clean

copy so you can restore your test data to a known state. Then, you can use automated testing tools

with known results to do regression testing (make sure changes don't break anything).

If you provide your users with two sets of test data, you can have them test against known data to

ensure they see the same results you do.

Stress test

When you create test data manually, you're likely to include just a few records, nothing like the

volume actually expected by the application. Some developers create a handful of records and

then duplicate them to provide realistic volume, but that results in an unrealistic data set.

With a suitably large realistic data set, you can test that your application performs appropriately

under the expected load. Doing this kind of testing yourself will keep you from having to say

"But it wasn't slow in my office."

What does good test data look like?
By now, I hope you're convinced that creating a test data set is a good idea. But what should test

data look like? Test data should be both realistic and extreme. Test data should also avoid

pitfalls.

Good test data is realistic

Realistic test data reflects the application in both values and order of the data. Make sure that the

values you include are like the actual data users will enter. For example, if an application must

deal with customers around the world, don't include only North American addresses and phone

numbers.

If some data may occur more than once, make sure you include some duplicate values in the test

data. For example, an application for a bookstore or library has to handle several different books

with the same title.

The order of data matters, too. It's common to create test data in sorted order. If new records will

be entered in order in the application, that's fine. For example, sales orders will probably be

naturally sorted by order number. But if records will actually be entered randomly (like customer

records), make sure they're not ordered alphabetically in your test data set.

Good test data includes extreme values

In production, applications run into extreme values, missing values and more. Make sure your

test data includes records that reflect this. If an invoice can include anything from 1 to 100 line

items, make sure your test data has some of each and some in between.

Create a realistic volume of test data. If users will have 10,000 customer records at the end of a

year, don't test on 100. More accurately, don't do all your testing on 100.

Although a test data set is important, make sure you test your application with no data as well.

What will happen if the user tries to enter an invoice before entering any customers?

Make sure your test data addresses idiosyncrasies (or potential idiosyncrasies) of the data.

Include text values with apostrophes, double quotes and parentheses, if these can occur in real

data. Include all acceptable characters.

Good test data avoids pitfalls

There are a few things to avoid when creating test data. The first is obvious from the previous

discussion. Don't use a small set of data, repeated many times. As noted earlier, repeated data is a

good idea, if it reflects the reality of the application. But setting up 10 customers and replicating

them 100 times to create 1000 customer records is a poor choice.

Don't use sample values that make customers question your seriousness about their application.

While it's easy to enter Mickey Mouse and Donald Duck while you're testing a piece of code,

putting them in a test data set that a user will see may lead your client to suspect you consider his

application a toy.

Much more importantly, stay away from foul or inappropriate language in test data (and, of

course, in messages the user will see). Even if you think your test data will never be seen outside

your office, it's better to stay away from anything that might offend customers. A staff member

for one well-known VFP product created a whole series of "interesting" names; the company was

very embarrassed when these records were accidentally included with the sample data for one

version of the product.

Where does test data come from?
You have three basic choices for creating a test data set: copy or convert existing data, buy test

data or create test data. The right answer depends on the situation.

When updating or replacing an existing application, copying or converting data makes a lot of

sense, especially because it probably has to be done at some point anyway. For new applications,

that's not generally an option.

The second choice is to use a product that generates test data. I'll look at some of these below.

Finally, you can create test data either manually (which I don't recommend) or by writing code to

create it for you. I'll show a set of VFP classes designed to generate test data.

The School database

I've created an example database to make it possible to actually test the various alternatives. The

database, School.DBC in the session materials, represents a very simple student and courses set-

up for a school running on semesters and is shown in Figure 1.

Figure 1. This database represents students and courses for a school. It was created using the VFP Database

Wizard.

This database includes many of the data items you'll typically want to generate, including names,

addresses and phone numbers, as well as foreign keys that need to link to actual data in other

tables.

Creating test data from existing data

If your application is an update to or replacement for an existing application, a substantial data

set should already exist. For minor updates, you can probably test using a copy of this data. For

more significant updates or for replacement applications, the data structures are likely to change,

but you can write code to convert the existing data to the new format.

There are both pros and cons to taking this approach to creating test data. On the plus side, you

certainly get a realistic data set; what could be more realistic than the customer's actual data? In

addition, creating your test data from existing data forces you to consider the data conversion

process early on and gives you lots of opportunity to test that process.

The negatives need to be considered as well, though. First, conversion duplicates any problems in

the existing data. If bad data, such as orphaned records or duplicated primary keys, has crept in

over time, your test data set will include those problems. While your new code might prevent

them from occurring, you'll need a way to deal with them in existing data. (Of course, dealing

with this in creating your test data is a good thing, since it likely will lead to dealing with such

problems for the users, as well.)

Converting existing data may also fail to pick up unusual cases. After all, what makes them

unusual is that they don't occur very often. You may need to enhance the existing data with some

records to test extreme cases.

Perhaps the biggest issue is that converting existing data exposes items that should be kept

private, such as social security numbers, health information, salaries and so forth. However, there

are products available that allow you to deal with these issues by "scrambling" sensitive data.

You can also write some code to obfuscate the private data while keeping the rest.

Overall, for updates and replacements, using existing data as the basis for test data is probably

the best choice.

Buying test data

A number of companies offer test data generator products. In addition, Visual Studio 2005 Team

Edition includes a test generator; if you're using Visual Studio, this tool may be your best bet.

The test data generator products vary widely in price, ability and interface. What follows is an

overview of a few of them that make test versions freely available. In each case, the product has

additional, more advanced capabilities. The School database generated by each (except for GS

Data Generator, which doesn't let you actually generate the data with the test version) is included

in the session materials.

Advanced Data Generator

Advanced Data Generator (ADG) from Upscene Productions (www.upscene.com) can work with

any ODBC or ADO data source. The Pro edition (which is the regular product) costs $188 per

license for up to 4 licenses. An unlimited site license is $881. Upscene also offers less expensive

versions that work with only a single database; currently, they have such versions for InterBase

($74 for one developer; $339 for a site license), Firebird ($62/$276) and MySQL ($49/$226).

(All prices are as of March, 2007.) A free trial version is available at their website. The trial

version has a 30-day time limit.

ADG is organized in databases and projects. A database is any ODBC or ADO data source. You

register it with ADG and it appears in a list of databases. There's a wizard for registering a

database; the wizard includes a link to the Windows applets that let you create new datasources.

You can work with VFP databases through either ODBC or ADO, but if the VFP database

includes any features added after VFP 6 (such as auto-increments or blob fields), you have to use

ADO.

Once a database is registered, you can create projects for it. A single database can have multiple

projects, so you don't have to create all the test data for a database in one shot. An individual

project can populate one or more tables. Figure 2 shows the main workspace in ADG, with

databases at the top and projects on the bottom.

http://www.upscene.com/

Figure 2. Advanced Data Generator looks at the world in terms of databases and projects.

To create a project for the selected database, click the New button in the Data Generator Projects

section. The Data Generator Project dialog opens, set to the Project Settings tab (Figure 3). Use

this tab to specify a name and description for your project. There are two additional options here.

First, you can specify where the generated data goes. The default is to put it right in the database,

but you can also create SQL scripts and CSV files, as well as a couple of more esoteric formats.

Figure 3. You start creating a project in ADG by specifying a name for it.

You may want any existing data to be deleted before generating new data. In that case, if you

have referential integrity rules in place, deleting data in the right order is necessary to avoid RI

problems. The Empty tables in reverse order checkbox tells ADG to start deletion from the

bottom of the list of tables for which data is to be generated.

Once you specify the project-level information, you use the Data Settings tab (Figure 4) to

specify how to actually generate the data. For each table in the database, you can determine

whether to generate data and how many records to generate. There are a number of choices for

generating data for each field; the list varies based on the data type.

Figure 4. ADG's Data Settings tab lets you specify the order of data generation and the data to be generated

for each field.

Character fields offer the widest range of options and the list in Figure 4 is misleading (though

the figure shows the way this dialog opens every time). Expanding the dialog shows additional

options (Figure 5). The various Random items are self-explanatory. The Masked values option

lets you specify a format to which items must conform (analogous to an inputmask). The Data

library option lets you use random items from provided lists of first and last names (both English

and Spanish, with the option of using only male or only female), city names or street names from

a number of countries, US states, countries and even companies.

Figure 5. Character fields can be based on a wide variety of sources in ADG.

The Generate dropdown lets you gather data from other than random sources, including a fixed

list of items (Figure 6). You specify the contents of the list and how the list should be applied to

your new records. Another choice in the Generate dropdown is a referential link; you specify the

table and field the data comes from and whether links should be random, sequential or one-to-

one. Yet another option is to draw the values from a text file.

Figure 6. Rather than generating field values randomly in ADG, they can be drawn from a specified list.

The choices for fields seen as "Text" (a VFP memo field) are more limited. These fields are

expected to contain paragraphs and all the choices are oriented toward that goal.

One attractive feature of ADG is the ability to define "presets" for field types you use repeatedly.

A preset is like any other field specification, but it's stored and named, so you can apply it

repeatedly. ADG comes with a few presets, including one for US zip codes.

Once you've specified how data is to be generated, you run the project to actually generate the

type of output indicated. The Run Project dialog (Figure 7) appears and shows progress as the

data is generated.

Figure 7. ADG's Run Project dialog gives you feedback as the data is generated.

The biggest issues with ADG are in the user interface. As noted above, the Data Generator

Project dialog opens at a size that doesn't show all the choices. Even after you've resized it, the

next time you open it, it's back to the old size. The interface is unhelpful in other ways. For

example, though the main form remembers the size you set, it doesn't remember what database

and project you last selected.

In addition, the error messages displayed when something goes wrong in data generation are

difficult to interpret. I suspect ADG simply repeats the error returned by the ODBC driver or

OLE DB generator.

From a data standpoint, the most significant weakness is that random string values use the full

character set and have no notion of words. It would be useful to be able to generate random

strings of letters only or random strings of words.

DTM Data Generator

DTM Data Generator (DTM) from DTM soft (www.sqledit.com) supports ODBC, OLE DB and

OCI (Oracle Call Interface) databases. There are two versions, Standard and Professional. For the

Standard version, pricing starts at $159 for a single developer license, and includes a 3- license

pack ($299), a 5-license pack ($449), a 10-license pack ($799), a site license ($1199) and a world

license ($1999). For the professional version, a single developer license is $239. Bulk licenses

run $449 for three and $599 for five. An annual support subscription, including updates, is $60

http://www.sqledit.com/

after the first year. A demo version is available for download; it works like the full product, but is

limited to generating 10 records per table.

DTM is organized into projects and rules. A project refers to a particular database; you can create

multiple projects for a single database, but only one project can be open at a time. Within a

project, a series of rules determine how data is generated.

When you first open DTM, the Rule Wizard appears; Figure 8 shows the first page of the wizard.

Here you specify whether there's a connection to the database available and where rule generation

should start. If you indicate that a connection is available, the Connect to Database dialog (Figure

9) appears.

Figure 8. The DTM Rule Wizard starts by determining how to connect to a database and where to start the

generation process.

Figure 9. This dialog lets you set up a connection to a database in DTM. The bottom half of the dialog varies

based on the selection in the left pane.

What appears once you specify a database connection depends on your choice in the middle part

of Step 1. If you choose the default setting (shown in Figure 8), the second page of the Wizard

(Figure 10) appears, to let you choose which tables will have data generated.

Figure 10. This step of the DTM's Rule Wizard lets you specify which tables in the database should have test

data generated.

In the third step of the Wizard, you specify key settings, including the number of rows to

generate for each table. (This is a default; you can change it for individual tables later.)

In the final step, you determine what should be generated. The choices include putting data

directly into the tables, generating INSERT statements (a great way to ensure that you can

recreate your test data at any time), generating text files and generating XML.

When you choose Finish, the wizard makes an attempt to generate the appropriate data rules,

based on the field names and types in your database, as well as the relationships between tables.

It does a remarkably good job. For the sample School database, it put the tables in the right order,

so that records are created before their primary keys are needed as foreign keys. Figure 11 shows

the results for the School database.

Figure 11. DTM's Rule Wizard generates an initial set of rules and attempts to put the tables in the

appropriate order, using field names, types and relations as clues.

At this point, you can edit the generated rules and add your own. One rule you're likely to want is

a "Clear Rule" that indicates that existing data should be deleted before generated new data.

When you choose Add Clear Rule, a dialog lets you specify the order in which to empty the

tables to avoid RI problems. As with the generation order, DTM guessed this order right for the

School database.

To modify a rule, you highlight it and click Edit Rule (or simply double-click the rule). The Data

Rule dialog opens. Figure 12 shows the initial set of rules for the Students table. The boldface

symbol next to each field shows the fill method chosen; "R" indicates random data, "L" uses a

"Values library" (a predefined list of values), "M" is a masked value, along the lines of a regular

expression, and "I" says to ignore the field (necessary for VFP's auto-increment fields). You can

also base a field on another table (in the same or another database), allowing you to create

referential links, as well as generate values in order, and compute values based on constants or

other fields.

Figure 12. The rules created by DTM's wizard for the Students table include getting first name, last name and

city from predefined lists, and using masked values for address, postal code, phone number and email.

Like ADG, DTM provides predefined lists for a number of items. Figure 13 shows some of the

choices. Other sections include US states, US and Canadian postal codes (in separate lists), cities,

and countries, among other things. You can also build your own Values Libraries.

Figure 13. You can base the data in a field on a Values Library in DTM, a predefined list. One weakness here

is that there's no genderless list of first names; you have to choose either male or female.

While you're building your rules, you can see what the results for that table will look like by

switching to the Preview tab (Figure 14). This ability seems especially useful for masked values,

where you may need to adjust the mask several times before you get the desired result.

Figure 14. Use DTM's Preview tab to see the form of the generated data for a table.

Once you've tweaked the rules as needed, click Run All from the main window to generate the

data in the specified format(s). The Execution Console (Figure 15) appears and shows progress.

Figure 15. The DTM Execution Console shows progress while generating data.

Overall, DTM does a good job and is fairly easy to work with. The User Interface is unclear in

some places. (My guess is that English is not the first language of the developer.) The inability to

generate a mixed set of male and female names is also a negative; however, the raw data for the

Values Libraries is available from DTM, so you could create a mixed library.

GS Data Generator

GS Data Generator (GSDG) from Global Software Applications (www.gsapps.com) works with

a specific list of databases, which includes SQL Server, Oracle and FoxPro (through OLE DB),

among others. It comes in standard and professional editions, priced at $595 and $1950 for a

single license, respectively. There are volume discounts for multiple licenses: 10% for 2-5, 15%

for 6-10, 20% for 11-15 and 25% for 16 or more. A free trial version is available, but does not

permit you to actually store data in a database. Instead, you can see the generated data inside

GSDG. The trial version lets you test either the standard or professional edition; my testing was

done with the professional edition.

GSDG is organized into projects, which contain connections, batches and more. The GS Console

(Figure 16) gives you an overview.

http://www.gsapps.com/

Figure 16. GSDG is organized into projects. Each project contains connections, batches of generators,

lookups, and more.

When you create a new project, a wizard walks you through the initial setup. The Define

Connection page (Figure 17) comes first. The next step varies, depending on the type of database

you choose. For VFP, the Data Link properties dialog lets you set up an OLE DB connection to a

database.

Figure 17. This GSDG page lets you choose the type of database, as well as name and describe the connection.

Once you set up the connection, the Create Generators page (Figure 18) prompts you to set up

one or more generators for the database. A generator is a set of rules for generating data for a

single table. Generators are grouped into batches. Although the page doesn't make it obvious, you

can use it to create several "batches." Initially, it offers you Batch 1; to add another generator,

choose <New Batch> from the Batch dropdown.

Figure 18. On GSDG's Create Generators page, you decide which tables to generate data for and whether the

generated data is added to existing data or replaces it.

When you choose Next from Create Generators, the AutoGenerator Setup page (Figure 19) is

displayed. This page lets you specify the rules GSDG applies to the database to create the initial

set of generators. Like DTM, GSDG uses the structure of the database to guess how to generate

the data. However, in this case, you have significant control over the rules.

Figure 19. The AutoGenerator Setup page specifies which of GSDG's rules to apply when initially creating

generators.

GSDG uses three kinds of rules. The RI rules handle primary, candidate and foreign keys. CN

rules provide guidelines for fields with certain strings in their names; for example, by default, a

field name containing "zip" is filled with a US Zip Code. DT rules provide defaults for other

fields based on their data type. You can turn off any of these sets of rules.

In fact, you can modify or remove the default rules and add your own. Click Modify

AutoGenerator to open the AutoGenerator Rules dialog. Figure 20 shows the dialog with the

default rules. To modify a rule, just click it and change it. To add a rule, click the New button on

the right side of the dialog. A new row is added; you can fill in the fields. (You don't specify the

rule type; GSDG figures it out.) Make sure to then move the rule to the right place in the list; it

appears that rules are processed in the order shown in this dialog.

Figure 20. GSDG's default rules do a pretty good job of generating data, but you can tweak them for your

situation.

If you're using VFP's auto-increment feature to generate primary keys, you may want to change

the rule for the generation of Integer primary and candidate keys to leave them empty.

Once you click Finish on the AutoGenerator Setup page, GSDG creates an initial set of

generators. To see the generator for a table, expand the Generators section and the specific Batch

in the treeview and click on the table. The right side of the main window shows the generator for

that table; you can modify the rules as needed. Figure 21 shows the generator for the Classes

table after modification.

Figure 21. You can see and edit the rules for a particular table in GSDG by drilling down in the treeview.

GSDG provides two ways to specify the rule for a particular field. Use the dropdown in the

Generation Rule column (Figure 22) to choose from the most common options, including lists of

names, cities, states and so forth. The dropdown also includes "reference," which lets you point

to a field in another table to create foreign keys.

Figure 22. GSDG's Generation Rules dropdown provides quick access to the most common rules.

You can also build more complex rules, by clicking the ellipsis button next to the dropdown.

Doing so opens the Expression Builder, where you have access to a wide variety of functions and

columns from which you can build the rule.

Using your own list of values is a little harder in GSDG than in other products, but it's also more

flexible. To do so, you have to create a Custom List, which is essentially a table. First, you right-

click on Custom Lists in the treeview and choose New Custom List. In the Create Custom List

dialog, you can either read the structure of the list from a database (including a large list provided

with GSDG) or specify the fields yourself, as in Figure 23. Once you've created the structure,

choose the new list in the treeview and enter the individual items (Figure 24).

Figure 23. To create a list of values in GSDG, start by defining fields for a table to hold those values.

Figure 24. After you create a custom list in GSDG, you add items to it by typing in the right pane.

You can use custom lists either through the Reference choice or by building a Lookup for the

item. The Reference choice is easier, but building a Lookup gives you more control. For

example, in a Lookup, you can determine whether values are evenly distributed.

When you've set up the generators as you want them, click the Run button to generate data. In the

trial version, you get a reminder that you can only run in Debug mode and data won't be stored to

the database. Once you've generated the data, click on the table and then on the Data tab to see

the results. Figure 25 shows data generated for the Students table. Because StudentID is an auto-

increment field left empty by the generator, there's no data shown. That limit makes it hard to

check on foreign keys.

Figure 25. The Data tab for a table lets you see the results of data generation.

I found it a little harder to figure out how to use GSDG than the other products, but its overall

capabilities are impressive. It is missing some features, however, including the ability to talk to

any ODBC or OLE DB data source, and has only a limited ability to generate output other than

actual data.

Generating test data with custom code

The final alternative for generating test data is to use custom code. The advantage of this

approach is that you can tailor it exactly to your needs. The downside, of course, is writing and

debugging the generation code. I've reduced that cost by writing a set of generic VFP classes to

handle test data generation. To use them, you have to write only a small number of methods.

Like the commercial products, my test data generator has some basic data to draw from,

including lists of last names; male and female first names; street names; city, state, and zip code

combinations; and area codes. Most of these lists (which are included with the session materials)

were created by finding an appropriate list somewhere on the Internet and converting it to a VFP

table.

Overall structure

Creating a test data set involves two processes, generating the data and storing it in tables. It's

quite possible for the same data to be stored in several different ways, so I chose to separate the

two processes. (One of the things this decision enables is testing different database designs on the

same data. It also enables saving code to generate the data rather than saving the data itself.)

To handle the two tasks, I created two abstract classes. MakeDataSet is a template for generating

an entire data set and storing the data. MakeRecord is a template for generating a single record;

its driver method returns an object with the data for that record stored in properties. Each

subclass of MakeDataSet uses a subclass of MakeRecord. Both classes are in MakeDataV2.PRG

in the session materials.

Both class hierarchies use a class that puts a wrapper around the RAND() function.

RandFunctions seeds RAND() in its Init method, and includes three functions that use RAND():

 RandInt returns a random integer between specified values.

 RandLetter returns a random letter of the alphabet.

 RandRecord chooses a record at random from a specified table and returns the value of a

specified field.

This data generator is organized around data sets and types. A data set is the whole set of test

data to be generated. A data type is a particular kind of record to generate. Though data types

usually correspond to individual tables, a data type could, in fact, include data aimed at multiple

tables (see "Generating People" below). The generator lets you specify the number of records to

generate for each data type.

Creating a Data Set

MakeDataSet is fairly simple. It's subclassed from Session (so that it works in a private data

session) and has five custom properties:

 cGeneratorClass is the name of the MakeRecord subclass used to create individual

records;

 cGeneratorClassLib is the name of the class library containing the MakeRecord subclass;

 oRand holds an object reference to a RandFunctions object;

 oRecordGenerator holds an object reference to the MakeRecord subclass;

 oDataToGenerate holds a collection indicating the types and numbers of records to

generate.

The only built-in methods containing code are Init and Destroy. Init is brief:

This.oRand = NEWOBJECT("RandFunctions","RandFuncs.PRG")

This.oRecordGenerator = ;

 NEWOBJECT(This.cGeneratorClass, This.cGeneratorClassLib)

This.oDataToGenerate = CREATEOBJECT("Collection")

This.OpenTables()

This.SetData()

Destroy is even simpler:

This.CloseTables()

The class has 11 custom methods, many of which are abstract at this level. Table 1 lists the

custom methods.

Table 1. Custom methods—MakeDataSet uses these custom methods to create a set of test data.

Method Purpose

About Documentation for this class.

AddDataType Add a data type to the collection of types to generate.

AfterMakeSet Code to run after all records have been added. Abstract.

AfterMakeType Code to run after creating all records of one type. Abstract

CheckLookup Checks whether a particular value has already been added to a specified table.

If not, adds it. Returns the primary key of the record.

CloseTables Closes tables opened by this class. Abstract.

GetRandRecord Calls the RandRecord method of the RandFunctions object.

MakeSet The main method of this class. Calls on the record generator class to create a

set of records and saves them.

OpenTables Opens tables needed by this class. Abstract.

SaveRecord Saves a record returned by the record generator into the appropriate tables.

Abstract.

SetData Sets up the collection of data types to create. Abstract.

AddDataType adds a data type to the collection of types to generate. It accepts two parameters:

the name of the data type and the number of records to generate. The code, intended to be called

from SetData in subclasses, is straightforward:

PROCEDURE AddDataType(cName, nCount)

LOCAL oDataObject

* Make sure the collection exists

IF VARTYPE(This.oDataToGenerate) <> "O"

 This.oDataToGenerate = CREATEOBJECT("Collection")

ENDIF

* Create the data object

oDataObject = CREATEOBJECT("Empty")

ADDPROPERTY(oDataObject, "Type", m.cName)

ADDPROPERTY(oDataObject, "Count", m.nCount)

* Add the object to the collection, using the type as the key

This.oDataToGenerate.Add(oDataObject, m.cName)

RETURN

Although the MakeSet method is the driver for the whole process, the code is pretty simple. The

method goes through the list of types to generate, and creates the specified number of records for

that type.

LOCAL oDataType, nRecord, oRecord

FOR EACH oDataType IN This.oDataToGenerate FOXOBJECT

 FOR nRecord = 1 TO oDataType.Count

 oRecord = This.oRecordGenerator.GenerateRecord(oDataType.Type)

 This.SaveRecord(oRecord, oDataType.Type)

 ENDFOR

 This.AfterMakeType()

ENDFOR

This.AfterMakeSet()

RETURN

CheckLookup lets you store look-up data as you store the rest of the data, as well as create links

to look-up data. CheckLookup can be called from SaveRecord in a subclass. It receives five

parameters: the value to look for, the alias of the table, the index to use for the search, the name

of the field in which to put the value if it's not found, and the name of the primary key field to

return.

PROCEDURE CheckLookup(cValue, cTable, cKey, cField, cPKField)

LOCAL uReturn, cReturnField

IF NOT SEEK(UPPER(cValue), cTable, cKey)

 INSERT INTO (cTable) (&cField) ;

 VALUES (cValue)

ENDIF

cReturnField = cTable + "." + cPKField

uReturn = EVALUATE(cReturnField)

RETURN uReturn

Creating a Record

MakeRecord provides basic tools that make writing subclass code to generate records easier. A

number of its methods are abstract at this level.

MakeRecord has four custom properties:

 oData is a collection holding the list of tables (raw data tables, such as the list of

surnames) to be opened for generating the record. Once the tables have been opened, the

collection also contains the number of records in each of these tables;

 oMethods is a collection of methods to call in order to generate each record type;

 oRand is an object reference to a RandFunctions object.

 oRecord is an object reference to the record being created.

Like MakeDataSet, the only built-in methods containing code are Init and Destroy, but they do a

little more work here than in MakeDataSet. Init calls several methods that do the actual work of

setting things up:

This.oRand = NEWOBJECT("RandFunctions","RandFuncs.PRG")

This.oData = CREATEOBJECT("Collection")

This.oMethods = CREATEOBJECT("Collection")

This.SetProbabilities()

This.SetMethods()

This.SetData()

This.OpenData()

RETURN

Destroy cleans up:

This.CloseData()

This.oRecord = .null.

RETURN

MakeRecord has 13 custom methods, listed in Table 2.

Table 2. Generating records—MakeRecord's custom methods help to generate random data.

Method Purpose

About Documentation method.

AddData Adds an item to the oData collection. Pass the name and alias of the table as

parameters.

AddMethod Adds an item to the oMethods collection. Pass the name of the method and the

data type as parameters.

CloseData Closes data tables opened by this class. Uses oData to determine what to close.

GenerateRecord The driver method for record generation.

GetDataCount Returns the number of records in a specified data table.

OpenData Opens data tables used by this class. Uses the information in oData.

RandInt Returns a random integer between specified values by calling the RandInt

method of the RandFunctions object.

RandLetter Returns a random letter of the alphabet by calling the RandLetter method of

the RandFunctions object.

RandRecord Chooses a record at random from a specified table and returns the value of a

specified field by calling the RandRecord method of the RandFunctions

object.

SetData Sets up the list of tables to open. Abstract.

SetMethods Sets up the list of methods to call to generate the data. Abstract.

SetProbabilities Sets up the probabilities used to decide what data to generate for a given

record. Abstract

SetData is an abstract method to be specified at the subclass level. It's meant for populating the

oData collection with the list of tables used for generating random values. For example, for a

person, you'd include the tables of boys' names, girls' names and surnames, as well as the CSZ

table and the table of area codes. In concrete subclasses, SetData is likely to be a series of calls to

AddData.

AddData is a wrapper for the Add method of the oData collection. It lets you add items to the

collection without worrying about its internal structure:

PROCEDURE AddData(cTable, cAlias)

LOCAL oDataObject

* Make sure the collection exists

IF VARTYPE(This.oData) <> "O"

 This.oData = CREATEOBJECT("Collection")

ENDIF

* Create the data object

oDataObject = CREATEOBJECT("Empty")

ADDPROPERTY(oDataObject, "Table", m.cTable)

ADDPROPERTY(oDataObject, "Alias", m.cAlias)

ADDPROPERTY(oDataObject, "Count")

* Add the object to the collection,

* using the alias as the key

This.oData.Add(oDataObject, m.cAlias)

RETURN

OpenData loops through the oData collection, opening the specified tables. For each table it

opens, it stores the number of records in the appropriate member of the oData collection. The

code is fairly straightforward:

LOCAL oTableInfo, lReturn

lReturn = .T.

FOR EACH oTableInfo IN This.oData FOXOBJECT

 TRY

 cAlias = oTableInfo.Alias

 USE (oTableInfo.Table) ALIAS (m.cAlias) IN 0

 oTableInfo.Count = RECCOUNT(m.cAlias)

 CATCH

 MESSAGEBOX("Cannot open table: " + oTableInfo.Table)

 lReturn = .F.

 ENDTRY

ENDFOR

RETURN lReturn

CloseData loops through the oData collection, closing the tables:

LOCAL oTableInfo

FOR EACH oTableInfo IN This.oData FOXOBJECT

 cAlias = oTableInfo.Alias

 TRY

 USE IN (m.cAlias)

 This.oData.Remove(oTableInfo)

 CATCH

 ENDTRY

ENDFOR

RETURN

Both OpenData and CloseData use TRY-CATCH to avoid errors if tables can't be found.

Because this class is a developer tool, the error handling is fairly simple—just a messagebox.

The three RandX methods aren't called by code in MakeRecord; they're provided to be used in

code added to subclasses.

SetProbabilities and SetMethods are both abstract at this level. In subclasses, SetProbabilities is

used to set up probabilities for various attributes. In most cases, corresponding properties are

added in the subclass and SetProbabilities gives them appropriate values.

SetMethods is provided to populate the oMethods collection with the list of methods to call in

order to generate the actual data for each data type. The methods themselves are added at the

subclass level, as well. In subclasses, it's likely to be a list of calls to AddMethod.

AddMethod is a wrapper for the oMethods collection's Add method. The code is analogous to

that in AddData.

GenerateRecord is the main routine for this class. It loops through the list of methods in the

aMethods array, calling those that apply to the specified data type:

PROCEDURE GenerateRecord(cRecordType)

LOCAL oMethod, cMethod

This.oRecord = CREATEOBJECT("Empty")

FOR EACH oMethod IN This.oMethods FOXOBJECT

 IF oMethod.cGroup == m.cRecordType

 cMethod = "This." + oMethod.Name

 &cMethod

 ENDIF

ENDFOR

RETURN This.oRecord

GenerateRecord creates an empty object; it's up to the methods it calls to add appropriate

properties to hold the data.

Generating People

A fairly common need is generating people and their addresses, phone numbers, emails, and so

forth. So the first subclasses of MakeDataSet and MakeRecord I created perform this task. I'll

look at the MakeRecord subclass first, then show how it's used by the MakeDataSet subclass.

Both classes are contained in MakePeopleV2.PRG, which is included in the session materials.

The MakeRecord subclass is called MakePerson. It has a number of additional custom properties,

each of which controls either the range of data for a particular item or the probability of an item.

They're listed in Table 3. The array properties are filled in the SetProbabilities method.

Table 3. These custom properties of MakePerson determine the values permitted or the likelihood of a record

having a particular data value.

Property Purpose

aAddress[1,2] The probability that the person has each type of address. Column 1 is the

type. Column 2 is the probability.

aEmails[1,2] The probability that the person has each type of email. Column 1 is the

type. Column 2 is the probability.

aPhones[1,3] The probability that the person has each type of phone number. Column 1

is the type. Column 2 is the location. Column 3 is the probability.

aWeb[1,2] The probability that the person has each type of web address. Column 1 is

the type. Column 2 is the probability.

dOldest The earliest permitted birth date.

dYoungest The last permitted birth date.

nDates The number of days between dOldest and dYoungest.

nDomainWordMax The maximum number of words to use in creating a domain name.

nHasExtension The probability that a phone number includes an extension.

nHasLetter The probability that a street address includes a letter after the digits.

nHighHouseDigits The maximum number of digits in a street address.

nLowHouseDigits The minimum number of digits in a street address.

nMale The probability that a record should be male.

To create realistic people and contact data, I used the raw data tables. These provide a group of

names, streets, area codes and so forth. They're all listed in the SetData method, which uses the

AddData method to populate the oData collection:

PROCEDURE SetData

WITH This

 .AddData("RawData\LastNames", "LastNames")

 .AddData("RawData\BoysNames", "BoysNames")

 .AddData("RawData\GirlsNames", "GirlsNames")

 .AddData("RawData\StreetNames", "Streets")

 .AddData("RawData\Cities", "Cities")

 .AddData("RawData\AreaCode", "AreaCode")

 .AddData("RawData\Domains", "Domains")

 .AddData("RawData\TLDs", "TLDs")

ENDWITH

This.nDates = This.dYoungest - This.dOldest + 1

RETURN

Although the list of possible birth dates isn't stored in a table, SetData uses the end dates

provided to compute the number of birth dates available.

SetProbabilities fills in the likelihood that the person has various types of data. For example, the

chance of a home (personal) address is set to 90%, but there's only a 40% chance of a work

(business) address and a 20% chance of a school address.

Only a portion of the method is shown here. The rest is analogous, populating the rest of the

aPhones array and resizing and populating the aEmails and aWeb arrays.

WITH This

 DIMENSION .aAddresses[3,2]

 .aAddresses[1,1] = "Personal"

 .aAddresses[1,2] = .9

 .aAddresses[2,1] = "Business"

 .aAddresses[2,2] = .4

 .aAddresses[3,1] = "School"

 .aAddresses[3,2] = .2

 DIMENSION .aPhones[8,3]

 .aPhones[1,1] = "Personal"

 .aPhones[1,2] = "Voice"

 .aPhones[1,3] = .9

 .aPhones[2,1] = "Personal"

 .aPhones[2,2] = "Fax"

 .aPhones[2,3] = .3

SetMethods lists the methods to be called in the order in which they should be called, calling

AddMethod to populate the oMethods collection. :

PROTECTED PROCEDURE SetMethods

WITH This

 .AddMethod("GetName","Person")

 .AddMethod("GetBirthdate","Person")

 .AddMethod("GetAddresses","Person")

 .AddMethod("GetPhones","Person")

 .AddMethod("GetEmails","Person")

 .AddMethod("GetURLs","Person")

 .AddMethod("GetSSN","Person")

ENDWITH

RETURN

The real work is done in all the GetXXX methods listed in SetMethods. Each one creates one

kind of data. GetBirthdate is the simplest and demonstrates the most basic ideas:

LOCAL nRand

nRand = This.RandInt(1, This.nDates)

ADDPROPERTY(This.oRecord, "dBirthdate", ;

 This.dOldest + nRand - 1)

RETURN

RandInt returns a number between 1 and the number of days specified. The second line adds a

property called dBirthdate to the record and sets its value to the specified date (the day nRand-1

days after the starting date).

GetName generates a first name and last name and also sets the record's gender. It uses the

BoysNames, GirlsNames and LastNames tables. The method calls RandRecord to return a

surname. Next, it generates a random number and checks it against the probability that the person

is male. Depending on the result of that check, either a boy's name or a girl's name is chosen,

using the same approach as for the surname. cFirst and cLast properties are added and set to the

names chosen. In addition, a cGender property is added and set to either "M" or "F".

LOCAL nRec, nRand

* Choose a last name

ADDPROPERTY(This.oRecord, "cLast", ;

 ALLTRIM(This.RandRecord("LastNames","cName")))

* Determine male or female and get first name

nRand = RAND()

IF nRand <= This.nMale

 ADDPROPERTY(This.oRecord, "cFirst", ;

 ALLTRIM(This.RandRecord("BoysNames","cName")))

 ADDPROPERTY(This.oRecord, "cGender", "M")

ELSE

 ADDPROPERTY(This.oRecord, "cFirst", ;

 ALLTRIM(This.RandRecord("GirlsNames","cName")))

 ADDPROPERTY(This.oRecord, "cGender", "F")

ENDIF

Because each person can have multiple addresses, phone numbers, email addresses and websites,

the methods that generate that information all work similarly. Each first adds a property to the

person object pointing to an empty collection. Then it loops through the corresponding

probability array, and for each item, uses RAND() to determine whether this person should have

an item of the specified type. If so, the method creates an empty object to hold the new item.

Then, it uses appropriate techniques (calls to RandInt, RandLetter and RandRecord, calls to

RAND(), etc.) to create the data for that item and add properties to the new object to hold the

data. Finally, it adds the newly created object to the collection. GetAddresses is typical:

LOCAL nAddr, nRand, oAddress

LOCAL nHouseNumber, cHouseLetter, nHigh, nLow

ADDPROPERTY(This.oRecord, "oAddresses", CREATEOBJECT("Collection"))

FOR nAddr = 1 TO ALEN(This.aAddresses, 1)

 nRand = RAND()

 IF nRand <= This.aAddresses[m.nAddr, 2]

 * Generate this one

 oAddress = CREATEOBJECT("Empty")

 ADDPROPERTY(oAddress, "cType", This.aAddresses[m.nAddr, 1])

 * Get a house number. First, figure out how many digits,

 * then choose a random value with that many digits.

 * This approach is used because choosing randomly over

 * the whole range results in too many longer values.

 nRand = This.RandInt(This.nLowHouseDigits, This.nHighHouseDigits)

 nLow = 10^(nRand-1)

 nHigh = 10^nRand - 1

 nHouseNumber = This.RandInt(m.nLow, m.nHigh)

 * Check whether to add a letter

 nRand = RAND()

 IF nRand <= This.nHasLetter

 cHouseLetter = This.RandLetter()

 ELSE

 cHouseLetter = ""

 ENDIF

 cHouseNumber = TRANSFORM(m.nHouseNumber) + m.cHouseLetter

 * Get a street

 * Use method to move to correct record, but need to

 * retrieve multiple fields

 This.RandRecord("Streets","cStreet")

 cStreet = Streets.cDir -(" " + Streets.cStreet) - (" " + Streets.cType)

 * Get a city, state, zip combination

 This.RandRecord("Cities","cCity")

 ADDPROPERTY(oAddress,"Street", ;

 m.cHouseNumber + " " + ALLTRIM(m.cStreet))

 ADDPROPERTY(oAddress,"City", Cities.cCity)

 ADDPROPERTY(oAddress,"State", Cities.cState)

 ADDPROPERTY(oAddress,"Zip", Cities.cZip)

 ADDPROPERTY(This.oRecord, "AreaCode", Cities.cACode)

 * Now add the new address to the collection

 This.oRecord.oAddresses.Add(m.oAddress)

 ENDIF

ENDFOR

RETURN

MakePerson also includes GetPhones, GetEmails and GetURLs. Email addresses and URLs have

two components in common, the domain name and the top-level domain (COM, EDU, ORG,

etc.). So the class includes GetDomainName and GetTLD methods, which generate those

randomly.

The final method in MakePerson is GetSSN, used to generate a social security number at

random. The code follows the basic rules for the structure of a US social security number (which

I found on the web). It also demonstrates the approach to use for items that should be unique in

the data set, but can't be specified as AutoIncrement fields. GetSSN maintains a cursor of the

social security numbers generated so far. The code is set up so that the calling object (a subclass

of MakeDataSet) could create that cursor before calling on MakePerson; doing so allows

MakePerson to add data to an existing test set, rather than only create new test sets. Here's the

code for GetSSN:

LOCAL cSSN, nDigit1, nDigit2, nDigit3, nMiddle, nLast, lNewNum

IF NOT USED("__SSNs")

 CREATE CURSOR __SSNs (cSSN C(9))

 INDEX on cSSN TAG cSSN

ENDIF

lNewNum = .F.

DO WHILE NOT lNewNum

 * First set of three: 001 to 772

 nDigit1 = This.RandInt(0, 7) && First digit not above 7

 IF m.nDigit1 = 7

 nDigit2 = This.RandInt(0, 7)

 IF m.nDigit2 = 7

 nDigit3 = This.RandInt(0, 2)

 ELSE

 nDigit3 = This.RandInt(0, 9)

 ENDIF

 ELSE

 nDigit2 = This.RandInt(0, 9)

 IF m.nDigit1 = 0 AND nDigit2 = 0

 nDigit3 = This.RandInt(1, 9)

 ELSE

 nDigit3 = This.RandInt(0, 9)

 ENDIF

 ENDIF

 cSSN = TRANSFORM(m.nDigit1) + TRANSFORM(m.nDigit2) + TRANSFORM(m.nDigit3)

 * Second set of two: 01 to 99

 nMiddle= This.RandInt(1, 99)

 cSSN = m.cSSN + PADL(m.nMiddle,2,"0")

 * Third set of four: 0001 to 9999

 nLast = This.RandInt(1, 9999)

 cSSN = m.cSSN + PADL(m.nLast, 4, "0")

 * Is it unique?

 IF NOT SEEK(m.cSSN, "__SSNs", "cSSN")

 lNewNum = .T.

 INSERT INTO __SSNs VALUES (m.cSSN)

 ENDIF

ENDDO

ADDPROPERTY(This.oRecord, "cSSN", m.cSSN)

RETURN

To generate additional data items, create the appropriate GetXXX routine and add the method

call to the aMethods array.

Generating a Set of People

To create a set of people, I subclassed MakeDataSet and set cGeneratorClass to "MakePerson"

and cGeneratorClassLib to "MakePeople.PRG". I had to put code in only three methods,

OpenTables, SetData and SaveRecord.

For OpenTables, I chose to take the "open or create" approach. That is, for each table, the method

checks whether it already exists. If so, it opens the table. If not, the method creates the table with

the desired structure.

Depending on your needs, you might choose to always create new tables or to always open

existing tables. While testing my code, I used a version of OpenTables that created cursors, so

that they'd disappear when I was done. In some cases, you might choose to clone all the tables

from an existing database—that could provide an easy way to set up a test data set for an

application.

Here's a portion of the code in OpenTables. Note that if the Person table already exists, the code

creates the cursor of social security numbers and fills it with existing values to ensure the new

values are unique.

IF FILE("Person")

 USE Person IN 0

 * Grab SS#'s already in use

 SELECT cSSN FROM Person INTO CURSOR __SSNs READWRITE

 INDEX on cSSN TAG cSSN

ELSE

 CREATE TABLE Person (iID I AUTOINC UNIQUE, ;

 cFirst C(15), cLast C(30), cGender C(1), ;

 cSSN C(9), dBirth D)

ENDIF

IF FILE("Address")

 USE Address IN 0

ELSE

 CREATE TABLE Address (iID I AUTOINC UNIQUE, ;

 iPersonFK I, iLocFK I, cStreet c(60), ;

 cCity C(20), cState C(2), cZip C(9))

ENDIF

SetData just adds the Person data type to the oDataToGenerate collection, with a count of 5000.

SaveRecord is the most interesting method in this subclass. In this method, you can take the

generated data and store it in whatever form meets your needs. The database that got me started

on generating test data was designed specifically to test a new approach to storing contact

information; it puts all contact items into a single table, and maintains a pair of look-up tables to

indicate the item type and location. The version shown here uses a more traditional approach,

with separate Address, Phone, Email and Web tables. It also creates a look-up table for location

values ("Business", "Personal", "School", etc.) and uses the CheckLookup method to handle

those values.

LOCAL iPerson, iLoc

WITH oRecord

 INSERT INTO Person (cFirst, cLast, cGender, ;

 cSSN, dBirth) ;

 VALUES (.cFirst, .cLast, .cGender, ;

 .cSSN, .dBirthdate)

 iPerson = Person.iID

 FOR EACH oAddress IN .oAddresses FOXOBJECT

 WITH oAddress

 iLoc = This.CheckLookup(.cType, "Location", ;

 "cLocation", "cLocation")

 INSERT INTO Address (iPersonFK, iLocFK, cStreet, ;

 cCity, cState, cZip) ;

 VALUES (m.iPerson, m.iLoc, .Street, .City, ;

 .State, .Zip)

 ENDWITH

 ENDFOR

 FOR EACH oPhone IN .oPhones FOXOBJECT

 WITH oPhone

 iLoc = This.CheckLookup(.cLoc, "Location", ;

 "cLocation", "cLocation")

 INSERT INTO Phone (iPersonFK, iLocFK, ;

 cType, cNumber) ;

 VALUES (m.iPerson, m.iLoc, .cType, ;

 ALLTRIM(.AreaCode) + ALLTRIM(.Number))

 ENDWITH

 ENDFOR

 FOR EACH oEmail IN .oEmails FOXOBJECT

 WITH oEmail

 iLoc = This.CheckLookup(.cType, "Location", ;

 "cLocation", "cLocation")

 INSERT INTO Email (iPersonFK, iLocFK, mEmail) ;

 VALUES (m.iPerson, m.iLoc, .Email)

 ENDWITH

 ENDFOR

 FOR EACH oURL IN .oWeb FOXOBJECT

 WITH oURL

 iLoc = This.CheckLookup(.cType, "Location", ;

 "cLocation", "cLocation")

 INSERT INTO URL (iPersonFK, iLocFK, mURL) ;

 VALUES (m.iPerson, m.iLoc, .URL)

 ENDWITH

 ENDFOR

ENDWITH

RETURN

By changing the code in OpenTables and SaveRecord, you could even store the same data into

two different sets of tables, which would enable you to check which structure works better for a

particular application.

Generating the School database

MakePerson and MakePersonSet handle the basic information you want in a person record.

Since the School database contains two kinds of people (Instructors and Students), I subclassed

those classes to create MakeSchoolData and MakeSchoolSet (included with the session materials

in MakeSchoolDataV2.PRG).

Five methods contain code in MakeSchoolSet. OpenTables and CloseTables open and close the

tables in the School database, respectively.

SetData defines four data types to generate:

This.AddDataType("Department", 7)

This.AddDataType("Class", 1000)

This.AddDataType("Instructor", 1000)

This.AddDataType("Student", 1000)

RETURN

SaveRecord saves the generated data, using a CASE statement based on the data type to

determine what to do.

AfterMakeSet uses the GetRandRecord method to create relational links between the tables,

including the full process of generating the Students_And_Classes records:

* First, link courses to departments and instructors

SELECT Classes

SCAN

 REPLACE DepartmentID WITH ;

 This.GetRandRecord("Departments", "DepartmentId"), ;

 InstructorID WITH This.GetRandRecord("Instructors", "InstructorID")

ENDSCAN

* Add major to student

SELECT Students

SCAN

 REPLACE Major WITH This.GetRandRecord("Departments", "DepartmentName")

ENDSCAN

* Add student/course links

FOR nRecord = 1 TO 10000

 nStudent = This.GetRandRecord("Students", "StudentID")

 nCourse = This.GetRandRecord("Classes", "ClassID")

 INSERT INTO Students_And_Classes ;

 (ClassId, StudentID) ;

 VALUES ;

 (m.nCourse, m.nStudent)

ENDFOR

RETURN

MakeSchoolData has four additional properties and resets the nHasExtension property. Except

for nMaxSections, they all control the probability of a particular situation. nMaxSections

determines the maximum number of sections for a course.

nSingleParent = .5

nFemaleParent = .7

nMultiSection = .5

nMaxSections = 10

nHasExtension = .5

Only the three Set methods are overridden or extended. SetData opens some additional raw data

tables:

DODEFAULT()

This.AddData("Fields", "Fields")

This.AddData("CoursePrefix", "CoursePrefix")

This.AddData("CourseTopic", "CourseTopic")

This.AddData("Terms", "Terms")

This.AddData("ClassDays", "ClassDays")

RETURN

SetProbabilities specifies that everyone has one address, one phone and one email address.

SetMethods indicates which methods to call for each data type:

WITH This

 .AddMethod("GetName", "Student")

 .AddMethod("GetAddresses", "Student")

 .AddMethod("GetParents", "Student")

 .AddMethod("GetPhones", "Student")

 .AddMethod("GetEmails", "Student")

 .AddMethod("GetStudentNumber", "Student")

 .AddMethod("GetName", "Instructor")

 .AddMethod("GetEmails", "Instructor")

 .AddMethod("GetPhones", "Instructor")

 .AddMethod("GetDept", "Department")

 .AddMethod("GetMgr", "Department")

 .AddMethod("GetChair", "Department")

 .AddMethod("GetCourse", "Class")

 .AddMethod("GetTerm", "Class")

 .AddMethod("GetUnits", "Class")

 .AddMethod("GetMeetings", "Class")

ENDWITH

RETURN

As in MakePerson, the various Get methods use the raw data and a set of rules to create

particular data items. For example, GetParent figures out whether to use a single parent or a

couple, and puts together one or two names:

LOCAL nRec, nRand, cName

* Decide whether married or single

nRand = RAND()

IF nRand <= This.nSingleParent

 * Single parent--male or female

 nRand = RAND()

 IF nRand <= This.nFemaleParent

 cName = This.GetRandomName("GirlsNames")

 ELSE

 cName = This.GetRandomName("BoysNames")

 ENDIF

ELSE

 cName = This.GetRandomName("BoysNames")

 cName = m.cName + " and " + This.GetRandomName("GirlsNames")

ENDIF

* Choose a last name

cName = m.cName + " " + This.GetRandomName("LastNames")

ADDPROPERTY(This.oRecord, "ParentsNames", m.cName)

RETURN

To generate the School data set, instantiate MakeSchoolSet and call the MakeSet method:

oMakeSet = NewObject("MakeSchoolSet", "MakeSchoolDataV2.PRG")

oMakeSet.MakeSet()

While this approach is more work than using any of the commercial products, the ability to tweak

using VFP code means I can get data in exactly the form I want. The session materials include all

the classes described here.

The Bottom Line
Having a realistic set of test data makes almost every aspect of the development process easier.

Test data should reflect the real data, including both everyday and extreme cases. Whether you

create test data from production data, generate it with a commercial tool, or use VFP to generate

it, once you get used to working with a good test data set, you'll wonder how you ever managed

without one.

Copyright, 2007, Tamar E. Granor, Ph.D..

